Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 275, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605329

RESUMO

Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.


Assuntos
Brassica , Compostagem , Ácidos Indolacéticos , Poluentes do Solo , Humanos , Níquel/metabolismo , Níquel/toxicidade , Brassica/metabolismo , Peróxido de Hidrogênio/metabolismo , Rizosfera , Clorofila A , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
2.
Sci Rep ; 14(1): 5986, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472251

RESUMO

Lead (Pb) is toxic to the development and growth of rice plants. Nanoparticles (NPs) have been considered one of the efficient remediation techniques to mitigate Pb stress in plants. Therefore, a study was carried out to examine the underlying mechanism of iron (Fe) and silicon (Si) nanoparticle-induced Pb toxicity alleviation in rice seedlings. Si-NPs (2.5 mM) and Fe-NPs (25 mg L-1) were applied alone and in combination to rice plants grown without (control; no Pb stress) and with (100 µM) Pb concentration. Our results revealed that Pb toxicity severely affected all rice growth-related traits, such as inhibited root fresh weight (42%), shoot length (24%), and chlorophyll b contents (26%). Moreover, a substantial amount of Pb was translocated to the above-ground parts of plants, which caused a disturbance in the antioxidative enzyme activities. However, the synergetic use of Fe- and Si-NPs reduced the Pb contents in the upper part of plants by 27%. It reduced the lethal impact of Pb on roots and shoots growth parameters by increasing shoot length (40%), shoot fresh weight (48%), and roots fresh weight (31%). Both Si and Fe-NPs synergistic application significantly elevated superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione (GSH) concentrations by 114%, 186%, 135%, and 151%, respectively, compared to plants subjected to Pb stress alone. The toxicity of Pb resulted in several cellular abnormalities and altered the expression levels of metal transporters and antioxidant genes. We conclude that the synergistic application of Si and Fe-NPs can be deemed favorable, environmentally promising, and cost-effective for reducing Pb deadliness in rice crops and reclaiming Pb-polluted soils.


Assuntos
Nanopartículas , Oryza , Poluentes do Solo , Oryza/genética , Silício/farmacologia , Chumbo/metabolismo , Ferro/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Poluentes do Solo/metabolismo
3.
Heliyon ; 10(4): e25510, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390139

RESUMO

Thiourea (TU) is considered an essential and emerging biostimulant against the negative impacts of severe environmental stresses, including drought stress in plants. However, the knowledge about the foliar application of TU to mitigate drought stress in Linum usitatissimum L., has yet to be discovered. The present study was designed to assess the impact of foliar application of TU for its effects against drought stress in two flax cultivars. The study comprised two irrigation regimes [60% field capacity (FC) and the control (100% FC)], along with TU (0, 500, 1000 mg L-1) application at the vegetative stage. The findings indicated that drought stress reduced the shoot fresh weight (44.2%), shoot dry weight (67.5%), shoot length (41.5%), total chlorophyll (51.6%), and carotenoids (58.8%). Drought stress increased both cultivars' hydrogen peroxide (H2O2) and malondialdehyde (MDA). Foliar application of TU (1000 mg L-1) enhanced the growth and chlorophyll contents with or without drought stress. Under drought stress (60% FC), TU decreased MDA and H2O2 contents up to twofold. Moreover, TU application increased catalase (40%), peroxidase (13%), superoxide dismutase (30%), and total soluble protein contents (32.4%) differentially in both cultivars. Nevertheless, TU increased calcium (Ca2+) (42.8%), potassium (K+) (33.4%), and phosphorus (P) (72%) in shoots and decreased the elevated sodium (Na+) (28.2%) ions under drought stress. It is suggested that TU application (1000 mg L-1) enhances the growth potential of flax by enhancing photosynthetic pigment, nutrient uptake, and antioxidant enzymes under drought stress. Research outcomes, therefore, recommend that TU application can ameliorate drought-induced negative effects in L. usitatissimum L. seedlings, resulting in improved plant growth and mineral composition, as depicted by balanced primary and secondary metabolite accumulation.

4.
Sci Rep ; 14(1): 452, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172134

RESUMO

Urban atmospheric pollution is global problem and and have become increasingly critical in big cities around the world. Issue of toxic emissions has gained significant attention in the scientific community as the release of pollutants into the atmosphere rising continuously. Although, the Pakistani government has started the Pakistan Clean Air Program to control ambient air quality however, the desired air quality levels are yet to be reached. Since the process of mapping the dispersion of atmospheric pollutants in urban areas is intricate due to its dependence on multiple factors, such as urban vegetation and weather conditions. Therefore, present research focuses on two essential items: (1) the relationship between urban vegetation and atmospheric variables (temperature, relative humidity (RH), sound intensity (SI), CO, CO2, and particulate matter (PM0.5, PM1.0, and PM2.5) and (2) the effect of seasonal change on concentration and magnitude of atmospheric variables. A geographic Information System (GIS) was utilized to map urban atmospheric variables dispersion in the residential areas of Faisalabad, Pakistan. Pearson correlation and principal component analyses were performed to establish the relationship between urban atmospheric pollutants, urban vegetation, and seasonal variation. The results showed a positive correlation between urban vegetation, metrological factors, and most of the atmospheric pollutants. Furthermore, PM concentration showed a significant correlation with temperature and urban vegetation cover. GIS distribution maps for PM0.5, PM1.0, PM2.5, and CO2 pollutants showed the highest concentration of pollutants in poorly to the moderated vegetated areas. Therefore, it can be concluded that urban vegetation requires a rigorous design, planning, and cost-benefit analysis to maximize its positive environmental effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Estações do Ano , Poluentes Atmosféricos/análise , Paquistão , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , Cidades , Poluentes Ambientais/análise
5.
J Environ Manage ; 351: 119885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147772

RESUMO

Wildfires and post-fire management exert profound effects on soil properties and microbial communities in forest ecosystems. Understanding microbial community recovery from fire and what the best post-fire management should be is very important but needs to be sufficiently studied. In light of these gaps in our understanding, this study aimed to assess the short-term effects of wildfire and post-fire management on both bacteria and fungi community composition, diversity, structure, and co-occurrence networks, and to identify the principal determinants of soil processes influencing the restoration of these communities. Specifically, we investigated soil bacterial and fungal community composition, diversity, structure, and co-occurrence networks in lower subtropical forests during a short-term (<3 years) post-fire recovery period at four main sites in Guangdong Province, southern China. Our results revealed significant effects of wildfires on fungal community composition, diversity, and co-occurrence patterns. Network analysis indicated reduced bacterial network complexity and connectivity post-fire, while the same features were enhanced in fungal networks. However, post-fire management effects on microbial communities were negligible. Bacterial diversity correlated positively with soil microbial biomass nitrogen, soil organic carbon, and soil total nitrogen. Conversely, based on the best random forest model, fungal community dynamics were negatively linked to nitrate-nitrogen and soil water content. Spearman's correlation analysis suggested positive associations between bacterial networks and soil factors, whereas fungal networks exhibited predominantly negative associations. This study elucidates the pivotal role of post-fire management in shaping ecological outcomes. Additionally, it accentuates the discernible distinctions between bacterial and fungal responses to fire throughout a short-term recovery period. These findings contribute novel insights that bear significance in evaluating the efficacy of environmental management strategies.


Assuntos
Incêndios , Microbiota , Ecossistema , Solo/química , Carbono , Bactérias , Nitrogênio/análise , Microbiologia do Solo
6.
Plants (Basel) ; 12(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895990

RESUMO

The imbalanced use of fertilizers and irrigation water, particularly supplied from groundwater, has adversely affected crop yield and harvest quality in sugarcane (Saccharum officinarum L.). In this experiment, we evaluated the impact of potassium (K) and micronutrients [viz. Zinc (Zn), Iron (Fe), and Boron (B)] application and irrigation water from two sources, viz. canal, and tube well water on sugarcane growth, yield, and cane quality under field trails. Water samples from Mardan (canal water) and Rahim Yar Khan (tube well water) were analyzed for chemical and nutritional attributes. The results revealed that tube well water's electrical conductivity (EC) was three-fold that of canal water. Based on the EC and total dissolved salts (TDS), 83.33% of the samples were suitable for irrigation, while the sodium adsorption ratio (SAR) indicated only a 4.76% fit and a 35.71% marginal fit compared with canal water. Furthermore, the application of K along with B, Fe, and Zn had led to a significant increase in cane height (12.8%, 9.8%, and 10.6%), cane girth (15.8%, 15.6%, and 11.6%), cane yield (13.7%, 12.3%, and 11.5%), brix contents (14%, 12.2%, and 13%), polarity (15.4%, 1.4%, and 14%), and sugar recovery (7.3%, 5.9%, and 6%) in the tube well irrigation system. For the canal water system, B, Fe, and Zn increased cane height by 15.3%, 13.42%, and 11.6%, cane girth by 13.9%, 9.9%, and 6.5%, cane yield by 42.9%, 43.5%, and 42%, brix content by 10.9%, 7.7%, and 8%, polarity by 33.4%, 28%, and 30%, and sugar recovery by 4.0%, 3.9%, and 2.0%, respectively, compared with sole NPK application. In conclusion, the utilization of tube well water in combination with canal water has shown better results in terms of yield and quality compared with the sole application of canal water. In addition, the combined application of K and B significantly improved sugarcane yields compared with Zn and Fe, even with marginally suitable irrigation water.

7.
Chemosphere ; 345: 140439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838027

RESUMO

Heavy metals, especially cadmium (Cd), cause severe toxicity symptoms in crop plants. Applying nanoparticles (NPs) as nano-fertilizers is a novel approach to mitigating plants' Cd stress. However, knowledge about the combinational use of silicon (Si) and titanium dioxide (TiO2) NPs to mitigate Cd stress, especially in rice, must be highlighted. TiO2-NPs (15 mg L-1) and Si-NPs (2.5 mM) were applied alone and in combination to rice plants grown without (control; no Cd stress) and with (100 µM) Cd concentration. Results revealed that compared to the control plants, root length, shoot length, shoot fresh weight, and root dry weight of rice seedlings were significantly decreased by 25.43%, 26.64%, 34.13%, and 29.87% under Cd exposure. However, the synergistic effect of TiO2- and Si-NPs increased rice plants' shoot length, root length, root dry weight, and shoot fresh weight by 24.62%, 29.81%, 36.16%, and 33.07%, respectively, under the Cd-toxicity. The concentration of malondialdehyde (MDA) and H2O2 were amplified due to Cd stress, which leads to damage to the subcellular structures. Si and TiO2-NPs co-application improved the anti-oxidative enzymatic activities (catalase, peroxidase, superoxide dismutase) and an elevated concentration of non-enzymatic glutathione in Cd-exposed rice. The Cd accumulation was condensed by 21.37% and 19.7% in the shoot, while 48.31% and 45.65% in root tissues under Si-NPs + Cd and TiO2-NPs + Cd treatments compared to Cd-alone treated seedlings, respectively. The expression patterns of metal transporters, such as OsNramp1 and OsHMA3, were the highest when rice plants were cultivated under Cd stress and significantly reduced when treated with sole and combined Si- and TiO2-NPs treatments. In conclusion, combining Si- and TiO2-NPs significantly improved the antioxidant enzymatic activities, chlorophyll contents, biomass production, and reduced cellular damage. Despite limitations, our findings guide future research, addressing risks, optimizing concentrations, and assessing long-term effects that can balance agricultural progress with environmental sustainability.


Assuntos
Nanopartículas , Oryza , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Silício/farmacologia , Silício/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Nanopartículas/toxicidade , Antioxidantes/metabolismo , Plântula/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
8.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687393

RESUMO

Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.

9.
Plant Signal Behav ; 18(1): 2262795, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37767863

RESUMO

Drought alters plant physiology, morphology, and biochemical pathways, necessitating effective mitigation strategies. Strigolactones (SLs) are phytohormones known to enhance plant growth under abiotic stress. However, their specific impact on drought stress in maize remains unclear. This study aimed to determine the optimal SL concentration for mitigating drought stress in two maize hybrids (HY-1898, FH-1046). Maize plants were subjected to 60% field capacity drought stress in a pot experiment. After 40 d, different concentrations (0, 0.001, 0.01, and 0.1 mg L-1) of the synthetic SL analogue GR24 were applied to evaluate their effects on growth features, photosynthesis attributes, and osmolyte accumulation in the maize hybrids. Results showed that exogenous SL application significantly increased photosynthetic pigments in maize hybrids under drought stress. Chlorophyll content, gas exchange characteristics, net CO2 assimilation rate, stomatal conductance, water use efficiency, and antioxidant activities were enhanced by GR24. Leaf ascorbic acid and total phenolics also increased with SL application. Organic osmolytes, such as glycine betaine and free proline, were elevated in both maize hybrids under drought stress. Yield-related parameters, including cob diameter, cob weight, number of seeds per cob, and number of seeds per plant, were significantly increased by GR24 under drought stress. Our findings highlight the potential of GR24 foliar application to mitigate drought stress and promote maize growth and grain yield in a concentration-dependent manner. The minimum effective SL concentration against drought stress was determined to be 0.01 mg L-1. Overall, foliar application of GR24 could serve as a sustainable approach for drought tolerance in agriculture.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/metabolismo , Secas , Fotossíntese
10.
Plant Physiol Biochem ; 202: 107944, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37579682

RESUMO

Nanotechnology has emerged as a key empowering technology for agriculture production due to its higher efficiency and accurate target delivery. However, the sustainable and effective application of nanotechnology requires nanomaterials (NMs) to have higher stability and less aggregation/coagulation at the reaction sites. This can ideally be achieved by modifying NMs with some surfactants or capping agents to ensure higher efficiency. These modified nanomaterials (MNMs) stabilize the interface where NMs interact with their medium of preparation and showed a significant improvement in mobility, reactivity, and controlled release of active ingredients for nano-enabled agriculture. Several environmental factors (e.g., pH, organic matter and the oxidation-reduction potential) could alter the interaction of MNMs with agricultural plants. Firstly, this novel review article introduces production technologies and a few frequently used modification agents in synthesizing MNMs. Next, we critically elaborate the leveraging progress in the modified nano-enabled agronomy and unveil their phytoremediation potential. Lastly, we propose a framework to overcome current challenges and develop a strategy for safe, effective and acceptable applications of MNMs in nano-enabled agriculture. However, the long-term effectiveness and reactivity of MNMs should be investigated to assess their technology effectiveness and optimize the process design to draw definite conclusions.


Assuntos
Nanoestruturas , Agricultura , Nanotecnologia , Plantas
11.
Plants (Basel) ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447077

RESUMO

Maize (Zea mays L.) is a salt-sensitive plant that experiences stunted growth and development during early seedling stages under salt stress. Salicylic acid (SA) is a major growth hormone that has been observed to induce resistance in plants against different abiotic stresses. Furthermore, plant growth-promoting rhizobacteria (PGPR) have shown considerable potential in conferring salinity tolerance to crops via facilitating growth promotion, yield improvement, and regulation of various physiological processes. In this regard, combined application of PGPR and SA can have wide applicability in supporting plant growth under salt stress. We investigated the impact of salinity on the growth and yield attributes of maize and explored the combined role of PGPR and SA in mitigating the effect of salt stress. Three different levels of salinity were developed (original, 4 and 8 dS m-1) in pots using NaCl. Maize seeds were inoculated with salt-tolerant Pseudomonas aeruginosa strain, whereas foliar application of SA was given at the three-leaf stage. We observed that salinity stress adversely affected maize growth, yield, and physiological attributes compared to the control. However, both individual and combined applications of PGPR and SA alleviated the negative effects of salinity and improved all the measured plant attributes. The response of PGPR + SA was significant in enhancing the shoot and root dry weights (41 and 56%), relative water contents (32%), chlorophyll a and b contents (25 and 27%), and grain yield (41%) of maize under higher salinity level (i.e., 8 dS m-1) as compared to untreated unstressed control. Moreover, significant alterations in ascorbate peroxidase (53%), catalase (47%), superoxide dismutase (21%), MDA contents (40%), Na+ (25%), and K+ (30%) concentration of leaves were pragmatic under combined application of PGPR and SA. We concluded that integration of PGPR and SA can efficiently induce salinity tolerance and improve plant growth under stressed conditions.

12.
Plant Physiol Biochem ; 201: 107828, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329687

RESUMO

Mustard (Brassica campestris L.) is a major oilseed crop that plays a crucial role in agriculture. Nevertheless, a number of abiotic factors, drought in particular, significantly reduce its production. Phenylalanine (PA) is a significant and efficacious amino acid in alleviating the adverse impacts of abiotic stressors, such as drought. Thus, the current experiment aimed to evaluate the effects of PA application (0 and 100 mg/L) on brassica varieties i.e., Faisal (V1) and Rachna (V2) under drought stress (50% field capacity). Drought stress reduced the shoot length (18 and 17%), root length (12.1 and 12.3%), total chlorophyll contents (47 and 45%), and biological yield (21 and 26%) of both varieties (V1 and V2), respectively. Foliar application of PA helped overcome drought-induced losses and enhanced shoot length (20 and 21%), total chlorophyll contents (46 and 58%), and biological yield (19 and 22%), whereas reducing the oxidative activities of H2O2 (18 and 19%), MDA concentration (21 and 24%), and electrolyte leakage (19 and 21%) in both varieties (V1 and V2). Antioxidant activities, i.e., CAT, SOD, and POD, were further enhanced under PA treatment by 25, 11, and 14% in V1 and 31, 17, and 24% in V2. Overall findings suggest that exogenous PA treatment reduced the drought-induced oxidative damage and improved the yield, and ionic contents of mustard plants grown in pots. It should be emphasized, however, that studies examining the impacts of PA on open-field-grown brassica crops are still in their early stages, thus more work is needed in this area.


Assuntos
Antioxidantes , Mostardeira , Antioxidantes/metabolismo , Mostardeira/metabolismo , Secas , Fenilalanina/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Clorofila/metabolismo
13.
Chemosphere ; 328: 138574, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019403

RESUMO

Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 µg g-1, while the limit for soil is between 75 and 150 µg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.


Assuntos
Níquel , Poluentes do Solo , Níquel/análise , Solo , Plantas , Fotossíntese , Raízes de Plantas/química , Poluentes do Solo/análise , Biodegradação Ambiental
14.
Front Plant Sci ; 14: 932923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909407

RESUMO

Crop plants are vulnerable to various biotic and abiotic stresses, whereas plants tend to retain their physiological mechanisms by evolving cellular regulation. To mitigate the adverse effects of abiotic stresses, many defense mechanisms are induced in plants. One of these mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signaling pathway used in the transduction of extracellular stimuli into intercellular responses. This stress signaling pathway is activated by a series of responses involving MAPKKKs→MAPKKs→MAPKs, consisting of interacting proteins, and their functions depend on the collaboration and activation of one another by phosphorylation. These proteins are key regulators of MAPK in various crop plants under abiotic stress conditions and also related to hormonal responses. It is revealed that in response to stress signaling, MAPKs are characterized as multigenic families and elaborate the specific stimuli transformation as well as the antioxidant regulation system. This pathway is directed by the framework of proteins and stopping domains confer the related associates with unique structure and functions. Early studies of plant MAPKs focused on their functions in model plants. Based on the results of whole-genome sequencing, many MAPKs have been identified in plants, such as Arbodiposis, tomato, potato, alfalfa, poplar, rice, wheat, maize, and apple. In this review, we summarized the recent work on MAPK response to abiotic stress and the classification of MAPK cascade in crop plants. Moreover, we highlighted the modern research methodologies such as transcriptomics, proteomics, CRISPR/Cas technology, and epigenetic studies, which proposed, identified, and characterized the novel genes associated with MAPKs and their role in plants under abiotic stress conditions. In-silico-based identification of novel MAPK genes also facilitates future research on MAPK cascade identification and function in crop plants under various stress conditions.

15.
Environ Sci Ecotechnol ; 15: 100252, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36891261

RESUMO

Lithium's (Li) ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry. Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota. We examined the leverage existing published articles regarding advances in global Li resources, interplay with plants, and possible involvement with living organisms, especially humans and animals. Globally, Li concentration (<10-300 mg kg-1) is detected in agricultural soil, and their pollutant levels vary with space and time. High mobility of Li results in higher accumulation in plants, but the clear mechanisms and specific functions remain unknown. Our assessment reveals the causal relationship between Li level and biota health. For example, lower Li intake (<0.6 mM in serum) leads to mental disorders, while higher intake (>1.5 mM in serum) induces thyroid, stomach, kidney, and reproductive system dysfunctions in humans and animals. However, there is a serious knowledge gap regarding Li regulatory standards in environmental compartments, and mechanistic approaches to unveil its consequences are needed. Furthermore, aggressive efforts are required to define optimum levels of Li for the normal functioning of animals, plants, and humans. This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution. Additionally, we propose pathways to overcome Li problems and develop a strategy for effective, safe, and acceptable applications.

16.
Int J Biol Macromol ; 225: 886-898, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403770

RESUMO

Endophytic entomopathogenic species are known to systematically colonize host plants and form symbiotic associations that benefit the plants they live with. The actin-depolymerizing factors (ADFs) are a group of gene family that regulate growth, development, and defense-related functions in plants. Systematic studies of ADF family at the genome-wide level and their expression in response to endophytic colonization are essential to understand its functions but are currently lacking in this field. 14ADF genes were identified and characterized in the Citrus sinensis genome. The ADF genes of C. sinensis were classified into five groups according to the phylogenetic analysis of plant ADFs. Additionally, the cis-acting analysis revealed that these genes play essential role in plant growth/development, phytohormone, and biotic and abiotic responses; and the expression analysis showed that the symbiotic interactions generate a significant expression regulation level of ADF genes in leaves, stems and roots, compared to controls; thus enhancing seedlings' growth. Additionally, the 3D structures of the ADF domain were highly conserved during evolution. These results will be helpful for further functional validation of ADFs candidate genes and provide important insights into the vegetative growth, development and stress tolerance of C. sinensis in responses to endophytic colonization by B. bassiana.


Assuntos
Beauveria , Citrus sinensis , Beauveria/genética , Citrus sinensis/genética , Filogenia , Plantas/genética , Plântula/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
17.
Front Microbiol ; 14: 1285566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38204469

RESUMO

Glyphosate [N-(phosphonomethyl)-glycine] is a non-selective herbicide with a broad spectrum activity that is commonly used to control perennial vegetation in agricultural fields. The widespread utilization of glyphosate in agriculture leads to soil, water, and food crop contamination, resulting in human and environmental health consequences. Therefore, it is imperative to devise techniques for enhancing the degradation of glyphosate in soil. Rhizobacteria play a crucial role in degrading organic contaminants. Limited work has been done on exploring the capabilities of indigenously existing glyphosate-degrading rhizobacteria in Pakistani soils. This research attempts to discover whether native bacteria have the glyphosate-degrading ability for a sustainable solution to glyphosate contamination. Therefore, this study explored the potential of 11 native strains isolated from the soil with repeated glyphosate application history and showed resistance against glyphosate at higher concentrations (200 mg kg-1). Five out of eleven strains outperformed in glyphosate degradation and plant growth promotion. High-pressure liquid chromatography showed that, on average, these five strains degraded 98% glyphosate. In addition, these strains promote maize seed germination index and shoot and root fresh biomass up to 73 and 91%, respectively. Furthermore, inoculation gave an average increase of acid phosphatase (57.97%), alkaline phosphatase (1.76-fold), and dehydrogenase activity (1.75-fold) in glyphosate-contaminated soil. The findings indicated the importance of using indigenous rhizobacteria to degrade glyphosate. Therefore, by maintaining soil health, indigenous soil biodiversity can work effectively for the bioremediation of contaminated soils and sustainable crop production in a world facing food security.

18.
Ecotoxicol Environ Saf ; 248: 114322, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455351

RESUMO

Bioremediation of organic contaminants has become a major environmental concern in the last few years, due to its bio-resistance and potential to accumulate in the environment. The use of diverse technologies, involving chemical and physical principles, and passive uptake utilizing sorption using ecofriendly substrates have drawn a lot of interest. Biochar has got attention mainly due to its simplicity of manufacturing, treatment, and disposal, as it is a less expensive and more efficient material, and has a lot of potential for the remediation of organic contaminants. This review highlighted the adverse impact of persistent organic pollutants on the environment and soil biota. The utilization of biochar to remediate soil and contaminated compounds i.e., pesticides, polycyclic aromatic hydrocarbons, antibiotics, and organic dyes has also been discussed. The soil application of biochar has a significant impact on the biodegradation, leaching, and sorption/desorption of organic contaminants. The sorption/desorption of organic contaminants is influenced by chemical composition and structure, porosity, surface area, pH, and elemental ratios, and surface functional groups of biochar. All the above biochar characteristics depend on the type of feedstock and pyrolysis conditions. However, the concentration and nature of organic pollutants significantly alters the sorption capability of biochar. Therefore, the physicochemical properties of biochar and soils/wastewater, and the nature of organic contaminants, should be evaluated before biochar application to soil and wastewater. Future initiatives, however, are needed to develop biochars with better adsorption capacity, and long-term sustainability for use in the xenobiotic/organic contaminant remediation strategy.


Assuntos
Cortisona , Poluentes Ambientais , Águas Residuárias , Solo , Poluentes Orgânicos Persistentes
19.
RSC Adv ; 12(41): 26953-26965, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36320854

RESUMO

To improve the poor stability of nano zero-valent iron (nZVI), corn-straw biochar (BC) was used as a support for the synthesis of composites of nZVI-biochar (nZVI/BC) in different mass ratios. After a thorough characterization, the obtained nZVI/BC composite was used to remove hexavalent chromium [Cr(vi)] in an aquatic system under varying conditions including composite amount, Cr(vi) concentration, and pH. The obtained results show that the treatment efficiency varied in the following order: nZVI-BC (1 : 3) > nZVI-BC (1 : 5) > nZVI alone > BC alone. This order indicates the higher efficiency of composite material and the positive effect of nZVI content in the composite. Similarly, the composite dosage and Cr(vi) concentration had significant effects on the removal performance and 2 g L-1 and 6 g L-1 were considered to be the optimum dose at a Cr(vi) concentration of 20 mg L-1 and 100 mg L-1, respectively. The removal efficiency was maximum (100%) at pH 2 whereas solution pH increased significantly after the reaction (from 2 to 4.13). The removal kinetics of Cr(vi) was described by a pseudo-second-order model which indicated that the removal process was mainly controlled by the rate of chemical adsorption. The thermodynamics was more in line with the Freundlich model which indicated that the removal was multi-molecular layer adsorption. TEM-EDS, XRD, and XPS were applied to characterize the crystal lattice and structural changes of the material to specify the interfacial chemical behaviour on the agent surface. These techniques demonstrate that the underlying mechanisms of Cr(vi) removal include adsorption, chemical reduction-oxidation reaction, and co-precipitation on the surface of the nZVI-BC composite. The results indicated that the corn-straw BC as a carrier material highly improved Cr(vi) removal performance of nZVI and offered better utilization of the corn straw.

20.
Plants (Basel) ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432830

RESUMO

The plant-specific SHI-related sequence (SRS) family of transcription factors plays a vital role in growth regulation, plant development, phytohormone biosynthesis, and stress response. However, the genome-wide identification and role in the abiotic stress-related functions of the SRS gene family were not reported in white sweet clover (Melilotus albus). In this study, nine M. albus SRS genes (named MaSRS01-MaSRS09) were identified via a genome-wide search method. All nine genes were located on six out of eight chromosomes in the genome of M. albus and duplication analysis indicated eight segmentally duplicated genes in the MaSRS family. These MaSRS genes were classified into six groups based on their phylogenetic relationships. The gene structure and motif composition results indicated that MaSRS members in the same group contained analogous intron/exon and motif organizations. Further, promoter region analysis of MaSRS genes uncovered various growth, development, and stress-responsive cis-acting elements. Protein interaction networks showed that each gene has both functions of interacting with other genes and members within the family. Moreover, real-time quantitative PCR was also performed to verify the expression patterns of nine MaSRS genes in the leaves of M. albus. The results showed that nine MaSRSs were up- and down-regulated at different time points after various stress treatments, such as salinity, low-temperature, salicylic acid (SA), and methyl jasmonate (MeJA). This is the first systematic study of the M. albus SRS gene family, and it can serve as a strong foundation for further elucidation of the stress response and physiological improvement of the growth functions in M. albus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...